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Discerning influences of orientational instability on anomalously roughened interfaces
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We measure the influence of the orientational instability on the local interfacial widths of two classes of
super-rough growth models, one displaying single scaling and the other spatial multiscaling. For the former
class, the anomalous dynamic scaling behavior is totally attributed to the orientational instability. Thus the
local roughness relative to the average interfacial orientation in a local window of sizel, wn( l ,t), retrieves
ordinary dynamic scaling behaviors. In contrast, for the latter class, the effect of the orientational instability is
not the sole mechanism responsible for anomalously roughened interfaces; thuswn( l ,t) still retains anomalous
dynamic scaling behaviors.

PACS number~s!: 05.40.2a, 47.55.Mh, 64.60.Ht, 68.35.Ct
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The kinetic roughening phenomenon of growing inte
faces @1# has brought about much interest not only for
important application in industry but also for the gene
behavior widespread in nature’s morphology. F
example, the global interfacial widths w(L,t)
„[^ @h(x,t)2^ h(x,t) &L#2 &L

1/2
…, @with h(x,t) denoting the

interface height at positionx and timet, ^ ••• &L the spatial
average over the whole system of sizeL, and the overbar the
statistical average#, of the kinetically roughened surface
have been known to obey the following dynamic scali
ansatz@2#: w2(L,t)5L2x f (L/t1/z). For the correlation length
j;t1/z!L, w(L,t);tb with b5x/z; for j;t1/z@L,
w(L,t)@[wsat(L)#;Lx, wherewsat(L) is the saturated glo
bal width for systems of sizeL. x and z are known as the
roughness exponentand thedynamic exponent, respectively.
Although the experimentally accessible quantities are a
ally the local interfacial widthw( l ,t), measured over a loca
window of sizel (!L), and the height-difference correlatio
function G(r ,t) „[^ @h(x0 ,t)2h(x01r ,t)#2 &L …, people
generally believe that the kinetically roughened interfa
are self-affine and, thus, the local interfacial width and
height-difference correlation function have the same sca
behavior as the global interfacial width.

Until recently, much attention was focused on the ‘‘sup
rough’’ growth models, which are the growth models wi
the roughness exponentx.1. For various super-rough
growth models, the behavior of the local interfacial wid
w( l ,t) and the height-difference correlation functionG(r ,t),
in the regime where the correlation lengthj;t1/z!L, have
been numerically observed to obey the followinganomalous
dynamic scaling ansatz@3–6# w2( l ,t)5 l 2x f 1( l /t1/z) and
G(r ,t)5r 2x f 2(r /t1/z), where the scaling functionsf 1,2(y)
;y22k for y!1 andf 1,2(y);y22x for y@1. In contrast, for
the usual dynamic scaling behavior, the scaling function g
to a constant quickly in the smally limit. Thus we see that
systems with anomalous dynamic scaling behaviors con
of an extra independent exponentk(.0). Moreover, the
nonsaturation of the scaling functionf (y) in the small y
limit, the signature of anomalous dynamic scaling, gives r
to a substantial difference between global and local sca
behaviors. Quantitatively, we see thatw( l ,t); l x8 and
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G(r ,t);r 2x8, with x8[x2k, in the regimer< l !t1/z!L at
a fixed time slicet. These anomalous dynamic scaling beha
iors in the super-rough growth models are not only verifi
by various numerical works, but also observed in seve
experiments@7–10#.

Qualitatively, the interfacial super-roughness is attribu
to orientational instability toward the creation of larg
slopes. However, an extensive analysis of the influence
the orientational instability on the anomalously roughen
interfaces is still lacking. Thus it is unclear whether orien
tional instability alone causes the nonsaturation of the lo
interfacial width in the regimel !t1/z!L. This motivates us
to quantitatively measure the influence of the orientatio
instability on local interfacial widths of various super-roug
growth models. In order to clarify this issue, we first propo
a new definition of the local interfacial widthwn( l ,t) as

follows: wn
2( l ,t)[Š ^ @h(x,t)2h̃(x,t)#2 & l ‹L, which is the

roughness of the interface relative to the average interfa
orientation in a local window of sizel. Hereh(x,t) denotes
the interface heights, measured from the substrate, on a

ear latticex51,2, . . . ,L, while h̃(x,t) denotes the heights o
a straight line obtained by a least squares fit to the interfa
configuration in a local window of sizel at a given timet.
Quantitatively, h̃(x,t)5^ h(x,t) & l1(x2^ x & l) s( l ,t), with
the local orientation s( l ,t)5@12/(l 221)# ^ (x
2^ x & l) h(x,t) & l , where^ ••• & l denotes the spatial averag
calculated within a local window of sizel. Subsequently,
wn( l ,t) is obtained by averaging over many local window
of the same sizel along the interface, and then over th
randomness. Consequently, the original local widthw( l ,t)
and the modified local widthwn( l ,t) are related as follows
w2( l ,t)2wn

2( l ,t)5@( l 221)/12# ^ s2( l ,t) &L. Thus the mea-
surement of@w2( l ,t)2wn

2( l ,t)#1/2, which is proportional to
the magnitude of the slope of the local interfacial configu
tion, extracts the information related to the effect of orien
tional instability.

Next we undertake extensive numerical studies on t
major classes of super-rough growth models, one display
single scaling behaviors and the other spatial multisca
behaviors. We choose two distinct paradigmatic grow
3212 ©2000 The American Physical Society
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PRE 61 3213BRIEF REPORTS
models for simulation: the Leschhorn model@11# for the
former class, and the Das Sarma-Tamborenea~DT! model
@12# for the latter class. The Leschhorn model can be view
as the realization of the Edwards-Wilkinson type equat
with quenched disorder@13,14# in a discrete space-time la
tice. It has been shown@6# that this model, at the depinnin
transition, displays the interfacial super-roughness and si
scaling behaviors. In contrast, the DT model, originally p
posed to describe the mobility-limited surface-diffusio
driven growth mechanism in molecular-beam-epitaxy grow
processes, serves as a paradigm for the behavior of su
rough growth models with spatial multiscaling@4#. For com-
parison, we also simulate the Family model@15#, which is a
discrete realization of the original Edwards-Wilkinson equ
tion @16# with annealed white noise and displays truly se
affine interfacial behaviors and ordinary dynamic scaling

For all three growth models studied here, the interface
represented by a set of integersh(x,t) on a linear latticex
51,2, . . . ,L. No overhangs are allowed. Flat initial cond
tions, i.e., h(x,t50)[0 for all x, and periodic boundary
conditions, i.e.,h(L11,t)[h(1,t) and h(0,t)[h(L,t), are
imposed. The growth rules of the Leschhorn model@11# are
as follows. Each site on a square lattice is assigned a ran
noiseh(x,h), taking a value 1 with probabilityp or 21 with

FIG. 1. The interfacial configurationsh(x,t) vs the lattice sitex
for ~a! the Leschhorn model pinned atp5pc and~b! the DT model
at timet565536 ML. In both figures, the zero points of heights a
set equal to their respective average heights.
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probability q512p. The valuevx is defined asvx5h(x
11,t)1h(x21,t)22h(x,t)1gh(x,h). The parametersg
andq2p represent the relative strength of the random p
ning force compared to the surface tension and the driv
force, respectively. Then, at each time stept, the interface is
updated simultaneously for allx: h(x,t11)5h(x,t)11 if
vx.0, andh(x,t11)5h(x,t) otherwise. For the other two
models~the DT model and the Family model!, random depo-
sition occurs, and the timet is defined as the number o
deposited layers. The relaxation rules of the DT model@12#
are as follows:~1! Each sitex on a linear lattice is associate
with a coordination numbernx , which represents the numbe
of occupied lateral nearest neighbors after an adatom de
ited at some sitey. ~2! The adatom is allowed to relax to
nearest neighbor site only ifny50 andny8.0, with y85y
21 or y11. ~3! If both ny21 andny11 are larger than zero
one of the two sites is chosen at random. In contrast,
deposited adatom in the Family model@15# is allowed to
relax to the site with the smallest resulting height among
deposited site and its nearest neighbor sites.

We first study the Leschhorn model. Fig. 1~a! shows a
pinned interfacial configurationh(x,t) vs a lattice sitex,
with the system sizeL5512 at the depinning transitionp
5pc.0.8004~for g51) @11# for the Leschhorn model. Fig
ure 1~a! shows the formation of a global groove with a ho
zontal size of the order of the system sizeL. The interfacial
patterns for other super-rough growth models with sin
scaling behaviors@3,17# share a common characteristic: th
formation of global grooves. We then numerically measu
w( l ,t) andwn( l ,t) in the Leschhorn model. The simulatio
is done with a system sizeL516384 atp5pc, and averaged
over 100 realizations. Figure 2 shows a log-log plot
w2( l ,t) ~circle! and wn

2( l ,t) ~diamond! vs time t, for local
window sizesl 532 and 128~from bottom to top! of the
Leschhorn model atp5pc . The roughness exponentx and
the dynamic exponentz for the Leschhorn model are 1.2
60.01 and 1.4260.02, respectively@6#. The saturation of
wn( l ,t) in the regimel !t1/z gives strong evidence that th
anomalous time dependence of the original local wid
w( l ,t) in the long time regime can be solely attributed to t
orientational instability, which allows large interfacia

FIG. 2. The log-log plot ofw2( l ,t) ~circle! and wn
2( l ,t) ~dia-

mond! vs time t, for l 532 and 128~from bottom to top!, of the
Leschhorn model atp5pc .
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slopes. In order to know whetherwn( l ,t) retrieves ordinary
dynamic scaling behaviors, we perform data collapse
wn( l ,t) with a set of differentl ’s andt ’s. In Fig. 3, we obtain
excellent data collapse for bothw2( l ,t)/ l 2x ~the right data
collapse! and wn

2( l ,t)/ l 2x ~the left data collapse! vs l /t1/z,
with l 516,32, . . . ,256 andt>32 time steps, atp5pc , by
inserting the values of the roughness exponent (x51.23)
and the dynamic exponent (z51.42). Thuswn( l ,t) retrieves
ordinary dynamic scaling behaviors. This distinct behav
can be understood as follows. The growth rules of the
schhorn model allow the formation of large slopes in t
interface, but restrict the magnitude of slope variation in
spatial direction. Thus, within a local window of sizel (!
the system sizeL), the interface looks like a typical kineti
cally roughened interface tilted in a new direction. This c
cial feature explains why the Leschhorn model exhibits b
super-roughness and single scaling at the same time; m
over, the local interface roughness relative to the local ori
tation retrieves the ordinary dynamic scaling behavior. T
argument can also be used to explain the behaviors of
curvature model@3#, which is widely accepted as a prototyp
for describing many physical processes.

Next, we study the DT model. Fig. 1~b! is the interfacial
configurationh(x,t) vs the lattice sitex, with the system size
L5512 and timet565536 ML, for the DT model. Figure
1~b! shows the formation of extremely narrow and de
grooves in the interface, which is the signature pattern for
super-rough growth models with spatial multiscaling beh
iors @4#. Figure 4 is a log-log plot ofw2( l ,t) ~circle!, wn

2( l ,t)
~square!, and w2( l ,t)2wn

2( l ,t) ~diamond! vs time t, for a
local window sizel 58, of the DT model. The number o
realizations is equal to 100, and the system sizeL516384.
We see that@w2( l ,t)2wn

2( l ,t)#1/2, proportional to the mag-
nitude of the slope of the local interfacial configuration, ca
not represent the whole anomalous time-dependence e
of the original local widthw( l ,t) in the regimel !t1/z!L
with the dynamic exponentz53.74 @4#. Figure 4 clearly
shows thatwn( l ,t), the local interfacial roughness relative
the local orientation in a window of sizel, still increases with

FIG. 3. The data collapse ofw2( l ,t)/ l 2x ~on the right! and
wn

2( l ,t)/ l 2x ~on the left! vs l /t1/z for l 516, 32, . . . , 256, at p
5pc , with 2x52.46 andz51.42. The data forw2( l ,t)/ l 2x have
been shifted to the right by one decade for visibility.
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time even when t@ l z. In addition, both @w2( l ,t)
2wn

2( l ,t)#1/2 andwn( l ,t) have the same anomalous tempo
scaling as the original local widthw( l ,t). This robust
anomalous dynamic scalingbehavior is a unique feature o
super-rough growth models which exhibit spatial multisc
ing. It occurs because the growth rules of these models a
not only the formation of large slopes but also a large va
tion of the slopes in the spatial direction. The interfa
gradually forms very steep and narrow local grooves as t
increases. Thus, within the local window~of the fixed size!,
the interface roughness relative to the local orientation s
increases with time even in the late time regime. This beh
ior is in sharp contrast to that of super-rough models w
single scaling.

For growth models which obey the ordinary dynam
scaling ansatz, the new definition of the local widthwn( l ,t)
still displays the same scaling behaviors as the original
w( l ,t). Here we choose the Family model as an examp
The roughness exponentx and the dynamic exponentz for
the Family model are 0.50 and 2.0, respectively@4#. Thus
w2( l ,t) in the long time limit, i.e.,t@ l z (5 l 2), saturates and

FIG. 5. The log-log plot ofwn
2( l ,t) vs time t, for l 58, 32, and

128 ~from bottom to top!, of the Family model.

FIG. 4. The log-log plot ofw2( l ,t) ~circle!, wn
2( l ,t) ~square!,

and w2( l ,t)2wn
2( l ,t) ~diamond! vs time t, for l 58, of the DT

model.
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scales asl 2x (5 l ). Figure 5 is the log-log plot ofwn
2( l ,t) vs

time t, for l 58, 32, and 128~from bottom to top! of the
Family model. The number of realizations is equal to 10
and the system sizeL54096. This clearly shows thatwn

2( l ,t)
saturates in the long time limit, i.e.,t@ l 2. In addition, the
saturated values forwn

2( l ,t) (50.34, 1.37, and 5.46 forl
58, 32, and 128, respectively! scale asl. Thuswn( l ,t) in-
deed demonstrates the same scaling behaviors asw( l ,t).

In conclusion, we propose a new definition of the loc
interfacial widthwn( l ,t), which is the roughness of the in
terface relative to the average interfacial orientation in a
cal window of sizel. Then two major classes of super-roug
growth models, one displaying single scaling behaviors
the other spatial multiscaling behaviors, are numerica
studied in detail. We find that the interface belonging to
former class consists of global grooves with a horizontal s
comparable to the system sizeL; thus the local interfacia
width retrieves the ordinary dynamic scaling behavior un
the new definition. In contrast, we find that the interfa
belonging to the latter class consists of many local groo
with deep valleys and narrow horizontal sizes; thus the lo
,
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interfacial width still retains anomalous dynamic scaling b
haviors under the new definition. Thisrobust anomalous dy-
namic scaling behavioris a unique feature of super-roug
models with spatial multiscaling. In addition, for growt
models obeying the ordinary dynamic scaling ansatz,wn( l ,t)
still displays the same scaling behaviors as the original lo
width. We see that the measurement ofwn( l ,t) not only
gives values of the scaling exponents like those found fr
the measurement ofw( l ,t), but also discerns the robus
anomalous dynamic scaling behavior among systems w
exhibit super-roughness. Thus it gives us very important
formation for pinning down possible models to describe
experimental growth processes.

Note added.Recently we were informed that a techniqu
similar to the subtraction inwn( l ,t) has been employed in
the analysis of weather data@18#.
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