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Discerning influences of orientational instability on anomalously roughened interfaces
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We measure the influence of the orientational instability on the local interfacial widths of two classes of
super-rough growth models, one displaying single scaling and the other spatial multiscaling. For the former
class, the anomalous dynamic scaling behavior is totally attributed to the orientational instability. Thus the
local roughness relative to the average interfacial orientation in a local window of,siz€l,t), retrieves
ordinary dynamic scaling behaviors. In contrast, for the latter class, the effect of the orientational instability is
not the sole mechanism responsible for anomalously roughened interfaces,thu} still retains anomalous
dynamic scaling behaviors.

PACS numbgs): 05.40—-a, 47.55.Mh, 64.60.Ht, 68.35.Ct

The kinetic roughening phenomenon of growing inter-G(r,t)~r2x" with Y’ = x— «, in the regime <| <tY?<L at
faces[1] has brought about much interest not only for its g fixed time slice. These anomalous dynamic scaling behav-
important application in industry but also for the genericiors in the super-rough growth models are not only verified
behavior ~widespread in nature’s morphology. Forpy various numerical works, but also observed in several
example, the global interfacial widths w(L,t) experiment§ 7—10.

(=([h(x,t)—={h(x,t) } 1*). "3, [with h(x,t) denoting the Qualitatively, the interfacial super-roughness is attributed
interface height at positior and timet, ( - -- ) the spatial to orientational instability toward the creation of large
average over the whole system of sizeand the overbar the slopes. However, an extensive analysis of the influence of
statistical averade of the kinetically roughened surfaces the orientational instability on the anomalously roughened
have been known to obey the following dynamic scalinginterfaces is still lacking. Thus it is unclear whether orienta-
ansat42]: w?(L,t)=L2Xf(L/t*?). For the correlation length tional instability alone causes the nonsaturation of the local
E~t12<l, w(L,t)~tF with B=x/z; for é~tY¥>L, interfacial width in the regimé<t?<L. This motivates us
w(L,t)[=wsa(L)]~LX, wherewg,(L) is the saturated glo- to quantitatively measure the influence of the orientational
bal width for systems of sizé. y andz are known as the instability on local interfacial widths of various super-rough
roughness exponeand thedynamic exponentespectively.  growth models. In order to clarify this issue, we first propose
Although the experimentally accessible quantities are actua new definition of the local interfacial widthv,(1,t) as
ally the local interfacial widthw(l,t), measured over a local follows: Wﬁ(l,t)z(< [h(x,t)—ﬁ(x,t)]z), )., which is the

window of sizel (<L), and the height-difference correlation X . . .
(<L) g roughness of the interface relative to the average interfacial

H — _ 2
function G(r.t) (=([h(xo,t) ~h(Xo+r,1)]%).), people orientation in a local window of size Hereh(x,t) denotes

generally believe that the kinetically roughened interface . . .
are self-affine and, thus, the local interfacial width and the%he interface heights, measured from the substrate, on a lin-

height-difference correlation function have the same scalingar latticex=1,2,... L, while h(x,t) denotes the heights of
behavior as the global interfacial width. a straight line obtained by a least squares fit to the interfacial
Until recently, much attention was focused on the “super-configuration in a local window of sizeat a given timet.
rough” growth models, which are the growth models with Quantitatively, h(x,t)=( h(x,t) )+ (x—{x);) s(I,t), with
the roughness exponent>1. For various super-rough the local  orientation s(I,t)=[12/(12—1)]  {(x
growth models, the behavior of the local interfacial width —(x),) h(x,t) );, where( - - - ), denotes the spatial average
w(l,t) and the height-difference correlation functiGfr,t),  calculated within a local window of sizé Subsequently,
in the regime where the correlation lengihtY2<L, have  w,(l,t) is obtained by averaging over many local windows
been numerically observed to obey the followsmgpomalous of the same sizé along the interface, and then over the
dynamic scaling ansatZ3-6] w?(l,t)=12Xf,(1/t¥?) and  randomness. Consequently, the original local widt,t)
G(r,t)=r2Xf,(r/t'?), where the scaling function§; y)  and the modified local widthv,(I,t) are related as follows:
~y 2 fory<1 andf; (y)~y ?X fory>1. In contrast, for ~w(I,t)—w2(l,t)=[(12—1)/12] (sX(1,t) ),. Thus the mea-
the usual dynami_c sca_ling behavior., the scaling function goesgrement of w¥(l ,t)—WﬁU ,t)]¥2 which is proportional to
to a constant quickly in the smafilimit. Thus we see that the magnitude of the slope of the local interfacial configura-
systems with anomalous dynamic scaling behaviors consigjon, extracts the information related to the effect of orienta-
of an extra independent exponer{>0). Moreover, the tjgnal instability.
nonsaturation of the scaling functioi(y) in the smally Next we undertake extensive numerical studies on two
limit, the signature of anomalous dynamic scaling, gives risenajor classes of super-rough growth models, one displaying
to a substantial difference between global and Ios:al scalmging|e scaling behaviors and the other spatial multiscaling
behaviors. Quantitatively, we see thai(l,t)~1X¥ and behaviors. We choose two distinct paradigmatic growth
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100 FIG. 2. The log-log plot ofw*(l,t) (circle) andw;(l,t) (dia-

mond vs timet, for |=32 and 128(from bottom to top, of the
Leschhorn model gp=p,.

probability g=1—p. The valuev, is defined asv,=h(x
+1t)+h(x—1t)—2h(x,t) +gn(x,h). The parametergy
andq—p represent the relative strength of the random pin-
ning force compared to the surface tension and the driving
force, respectively. Then, at each time stethe interface is
100 | j updated simultaneously for ak: h(x,t+1)=h(x,t)+1 if
v,>0, andh(x,t+1)=h(x,t) otherwise. For the other two
models(the DT model and the Family modetandom depo-
sition occurs, and the time is defined as the number of
deposited layers. The relaxation rules of the DT mddé]

-200 100 200 300 200 500 are as follows{1) Each sitex on a linear lattice is associated
®) lattice site x with a coordination numbet, , which represents the number

FIG. 1. The interfacial configuratiortgx,t) vs the lattice sitex .Of occupied Iatfaral nearest neighbqrs after an adatom depos-
for (a) the Leschhorn model pinned pt= p, and(b) the DT model ited at some Sity. (,2) The &}datom is allowed tc_’ relax to a
at timet=65536 ML. In both figures, the zero points of heights are "€arest neighbor site only if,=0 andn,,>0, withy’=y

set equal to their respective average heights. —lory+1.(3 |flb0th. ny_; andny ., are larger than zero,
one of the two sites is chosen at random. In contrast, the

models for simulation: the Leschhorn moddll] for the deposited adatom in the Family moddlS] is allowed to
former class, and the Das Sarma-Tambore(@®) model relax to the site with the smallest resulting height among the
[12] for the latter class. The Leschhorn model can be viewedleposited site and its nearest neighbor sites.
as the realization of the Edwards-Wilkinson type equation We first study the Leschhorn model. Figal shows a
with quenched disorddr13,14 in a discrete space-time lat- pinned interfacial configuratiom(x,t) vs a lattice sitex,
tice. It has been show{i6] that this model, at the depinning Wwith the system sizé. =512 at the depinning transitiop
transition, displays the interfacial super-roughness and single p.=0.8004(for g=1) [11] for the Leschhorn model. Fig-
scaling behaviors. In contrast, the DT model, originally pro-ure X&) shows the formation of a global groove with a hori-
posed to describe the mobility-limited surface-diffusion-zontal size of the order of the system slzeThe interfacial
driven growth mechanism in molecular-beam-epitaxy growthpatterns for other super-rough growth models with single
processes, serves as a paradigm for the behavior of supesealing behavior§3,17] share a common characteristic: the
rough growth models with spatial multiscalifg]. For com-  formation of global grooves. We then numerically measure
parison, we also simulate the Family modigb], which isa  w(l,t) andwy(l,t) in the Leschhorn model. The simulation
discrete realization of the original Edwards-Wilkinson equa-is done with a system side=16384 atp=p., and averaged
tion [16] with annealed white noise and displays truly self-over 100 realizations. Figure 2 shows a log-log plot of
affine interfacial behaviors and ordinary dynamic scaling. w?(l,t) (circle) and wﬁ(l,t) (diamond vs timet, for local
For all three growth models studied here, the interface isvindow sizesl=32 and 128(from bottom to top of the
represented by a set of integdréx,t) on a linear latticex ~ Leschhorn model ap=p.. The roughness exponegtand
=1,2,...L. No overhangs are allowed. Flat initial condi- the dynamic exponert for the Leschhorn model are 1.23
tions, i.e.,h(x,t=0)=0 for all x, and periodic boundary *+0.01 and 1.420.02, respectivel\j6]. The saturation of
conditions, i.e.,h(L+1t)=h(1t) andh(0t)=h(L,t), are  w,(l,t) in the regimel <t*? gives strong evidence that the
imposed. The growth rules of the Leschhorn mdddl] are  anomalous time dependence of the original local width
as follows. Each site on a square lattice is assigned a random(|,t) in the long time regime can be solely attributed to the
noisez(x,h), taking a value 1 with probabilitp or —1 with  orientational instability, which allows large interfacial

interface height /
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FIG. 3. The data collapse of?(l,t)/1?¥ (on the right and Fle- 4. The2 log-log plot ofw*(l,t) (circle), wy(l.t) (square,
wZ(1,t)/12X (on the lefy vs 1/tY2 for 1=16, 32, ...,256, atp ~ and w(l,t)—wq(l,t) (diamond vs timet, for I=8, of the DT

=pe, With 2y=2.46 andz=1.42. The data fow?(l,t)/I>X have ~ Model.
been shifted to the right by one decade for visibility.
time even when t>1% In addition, both [w?(l,t)

slopes. In order to know whether,(1,t) retrieves ordinary _Wr2)(| 1)]"2 andwy(1,t) have the same anomalous temporal
dynamic scaling behaviors, we perform data collapse foPc@ling as the original local widtiw(l,t). This robust
w,(1,t) with a set of different’s andt’s. In Fig. 3, we obtain anomalous dynamic scalinigehavior is a unique feature of
excellent data collapse for boti?(l,t)/12¥ (the right data §uper-r0ugh growth models which exhibit spatial multiscal-
collapse and w2(1,t)/12 (the left data collapsevs 1/t'%, ing. It occurs becaqse the growth rules of these models aII.ow
with | = 16,32 . “ 1256 andt=32 time steps, ap=p,, by not only the formation of large slopes but also a large varia-

inserting the values of the roughness exponept {.23) tion of the slopes in the spatial direction. The interfape
and the dynamic exponernz€ 1.42). Thusw,(I,t) retrieves gradually forms very steep and narrow local grooves as time

ordinary dynamic scaling behaviors. This distinct behavior ¢ €aS€s- Thus, within the Io_cal winddief the f|>_<ed 3|_zea, .
the interface roughness relative to the local orientation still

can be understood as follows. The growth rules of the I‘eincreases with time even in the late time regime. This behav-

schhorn model allow the formation of large slopes in the. ~."" .

. . . T ior is in sharp contrast to that of super-rough models with

interface, but restrict the magnitude of slope variation in the_. .
e oy . : single scaling.

spatial direction. Thus, within a local window of sitd < For arowth models which obev the ordinary dvnamic

the system sizd ), the interface looks like a typical kineti- 9 y y oy

4 ! . S . scaling ansatz, the new definition of the local wieth(l,t)
cally roughened interface tilted in a new direction. This cru-"_ . . ) . n
; . - still displays the same scaling behaviors as the original one
cial feature explains why the Leschhorn model exhibits both :
; ) L w(l,t). Here we choose the Family model as an example.
super-roughness and single scaling at the same time; mores o uahness exponemtand the dvnamic exponeatior
over, the local interface roughness relative to the local orien,Eh E gl del P (’?50 d 2 g t'p Th
tation retrieves the ordinary dynamic scaling behavior. This 2e amily modet are 1.5 an W r_eszpec ivety. Thus
argument can also be used to explain the behaviors of the (1,t) in the long time limit, i.e.1>1% (=1%), saturates and
curvature mode]l3], which is widely accepted as a prototype
for describing many physical processes.
Next, we study the DT model. Fig(H) is the interfacial ®=2

configurationh(x,t) vs the lattice site, with the system size (I NE S S I
L=512 and timet=65536 ML, for the DT model. Figure A .

1(b) shows the formation of extremely narrow and deep
grooves in the interface, which is the signature pattern for the .
super-rough growth models with spatial multiscaling behav-
iors[4]. Figure 4 is a log-log plot ofv?(1,t) (circle), w3(l,t) O
(square, and WZ(I,t)—Wﬁ(I,t) (diamond vs timet, for a "
local window sizel =8, of the DT model. The number of s "
realizations is equal to 100, and the system izel6384.
We see thafw?(l,t) —w?(1,t)]*2 proportional to the mag- L.
nitude of the slope of the local interfacial configuration, can-
not represent the whole anomalous time-dependence effec - , ‘ ,

of the original local widthw(l,t) in the regimel <t*2<L 10° 10’ e oo
with the dynamic exponent=3.74 [4]. Figure 4 clearly i
shows thatv,(1,t), the local interfacial roughness relative to  FIG. 5. The log-log plot ofv?(l,t) vs timet, for =8, 32, and

the local orientation in a window of sizestill increases with 128 (from bottom to top, of the Family model.
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scales a$?X (=1). Figure 5 is the log-log plot ofv3(l,t) vs interfacial width still retains anomalous dynamic scaling be-
time t, for 1=8, 32, and 128from bottom to top of the  haviors under the new definition. Thisbust anomalous dy-
Family model. The number of realizations is equal to 100,namic scaling behaviors a unique feature of super-rough
and the system size=4096. This clearly shows thmﬁ(l,t) models W|th_spat|al m_ultlscallng. I_n add_ltlon, for growth
saturates in the long time limit, i.et>12. In addition, the =~ models obeying the ordinary dynamic scaling ansat] t)
saturated values fow?(l,t) (=0.34, 1.37, and 5.46 for still displays the same scaling behaviors as the original local
=8, 32, and 128, respectivelgcale ad. Thusw,(l,t) in- width. We see that the measurementvaf(l,t) not only
deed demonstrates the same scaling behaviovg(ig$). gives values of the scaling exponents like those found from

In conclusion, we propose a new definition of the localth® measurement ofv(l,t), but also discerns the robust
interfacial widthw,(1,t), which is the roughness of the in- @nomalous dynamic scaling behavior among systems which
terface relative to the average interfacial orientation in a lo8xhibit super-roughness. Thus it gives us very important in-
cal window of sizel. Then two major classes of super-rough forma_tlon for pinning down possible models to describe the
growth models, one displaying single scaling behaviors an§XPerimental growth processes.
the other spatial multiscaling behaviors, are numerically
fStUd'ed Iln detail. We f”]jd ltht?tlthe mterfaqeh be:]onglng tcl) the Note addedRecently we were informed that a technique
ormer class consists of glo al grooves with a erzonta_ SIZ&imilar to the subtraction inv,(I,t) has been employed in
comparable to the system site thus the local interfacial .

: X i : . . the analysis of weather dafa8s].

width retrieves the ordinary dynamic scaling behavior under
the new definition. In contrast, we find that the interface The work of N.-N.P. was supported in part by the Na-
belonging to the latter class consists of many local groovesional Science Council of the Republic of China under Grant
with deep valleys and narrow horizontal sizes; thus the locaNo. NSC 89-2112-M-002-012.
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